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It is known that the macroscopic properties of a solid body depend on its absolute dimen- 
sions. The basis for such an assertion is the nature of the interaction of particles (i.e., 
atoms, molecules or molecular groups) in a solid body [i]. The particles at the surface 
experience a one-sided action from the side of other particles in the body, while in the bulk 
of the body there is a statistical symmetry of the forces with which the particles interact. 
From the macroscopic point of view of the mechanical properties of an isotropic Solid body, 
this must lead to considerable nonunlformlty near the boundary and to surface tension. 

The coefficient of surface tension for solid bodies is of the order of 10 -a kgf/cm [2], 
i.e., in problems which can be solved within the framework of physical and geometrical line- 
arlty, the effect of surface tension can be neglected due to its smallness. In what follows, 
we will study only surface nonuniformity, assuming that far from the boundary, the solid is 
uniform. 

Under these assumptions, an experimental investigation [3] of thin polymer filmer, specimens 
of which in dynamic tests are viewed as three-layer plates, is undertaken. It is shown that 
the dynamic modulus of boundary layers of the film exceeds the modulus of the central layer 
by a factor of 2-3. The thickness of the boundary layer is on the order of i0 -3 mm. The 
error in the measurements ~s estimated at 30%. 

The use of films as specimens in such studies raises some doubt as to the validity of 
the identification of the phenomenon examined from the results of the experiments [3]. In- 
deed, the thickness of the film depends on the thermal force parameters of the technological 
process with which the film was prepared. The mechanical properties of the material, due to 
its orlentational stretching, depends strongly on these parameters. The fact that in this 
case it is not so much the scale factor as the technological factor that is observed has not 
been excluded. 

i. In order to clarify the effects of surface nonuniformity in a solid body, we will 
examine the behavior of specimens that differ only in geometry. The thermal force histories 
of these specimens, including also the technological preparation, are practically identical. 
In this case, all dimensions of the specimen are large in comparison with the expected thick- 
ness of the surface layer. 

The surface nonuniformity is estimated on prismatic specimens of polymethyl methacrylate 
(FMMC) and AMTs aluminum alloy. 

The length of the specimens is 320 mm, while the dimensions of the transverse cross 
section are not less than i0 mm. A system of clamps [4] ensures central stretching of the 
specimens, while a differential measuring scheme [5] permits using observations of the fourth 
significant figure in the signalfrom the sensor in the numerical analysis of the results. 
The strain sensors consist of FKPA 5-50 Kh strain resistors, which are accumulated on the 
lateral surface of the specimen. The average integral, along the base of the sensor, compo- 
~nents of the stresses Cxx, s Czz, where z is the longitudinal axis of the specimen, x and y 
are the symmetry axes of the transverse section of the specimen, are measured. 

The differential scheme for the measurements [5] determines the difference (Cxx -- ~Yy)' 
As tests show, for specimens with a square transverse section (i0 • l0 mma), the complex 

8xx-~gyy 
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does not exceed, with the exception of a single specimen, the magnitude 0.001. For the 
exceptional specimen, ~ = 0.01. A test of specimens with a rectangular section (25 • I0 

mm a ) gave 

= 0,028 • 0,002 ~r PM~, ~ = 0 ~ 0.001 ~r AMT~. 

Here, l xxl< 04.10-' and l xxl >l  yl, ie, the  ransverse denotation of the wide 
boundary of the specimen exceeds the aeformation of the narrow one. I~ should be noted =hat 
the surface tension qualitatively gives the same effect: the rectangular transverse section 
of the specimen on deformation transforms into a square one, 

The phenomenon of surface nonuniformity is analyzed numerically assuming that the 
modulus decreases exponentially with distance from the surface. For the case that the 
modulus on the surface is two times greater than the modulus in the bulk of the specimen, 
the dependence of m on the layer thickness has the following form: 

S Om 0.056;m 0,022 O.OlO 0.002 
o.5o o.2  oi12 olo6 

s is the distance from the surface, where the modulus is 40% less than the maximum value. 
Thus, in our experiments, the thickness of the layer for PMMC is a quantity on the order of 
0.1 mm; for the AMTs alloy, the effect of surface nonuniformity was not observed due to its 
smallness. 

This result can be predicted if it is assumed that the thickness of the surface depends 
on the magnitude of the characteristic size of the elements in the structure of the solid 
body. For metals, this quantity is 1-5 orders of magnitude smaller than for polymers. More- 
over, the elastic constants of the metal are practically independent of the past thermal 
force perturbations, which cannot be said of a polymer. 

The experiment examined here shows a weak dependence of the results of the measurements 
on the effect being studied. In order to amplify this dependence, mechanical states with a 
large gradient in stress near the surface are necessary. Such states give a contact inter- 
action. In order to verify this idea, we will examine the following problem in the theory of 
elasticity. 

2. Let a stamp be axisymmetrically pressed into a three-layer elastic foundation with 
no friction in the region of contact r~. The foundation consists of a rigid half space, 
on which lies a packet of two elastic layers with overall thickness H* = H + h without fric- 
tion. The lower layer has thickness H and elastic characteristic G and 9, while the upper 
layer has a thickness h and elastic characteristics G~ and ~. There is total coupling be- 
tween the layers. It is assumed that h << H, h << =~ and G < G~. 

Investigation of the problem indicated permits estimating the degree to which the sur- 
face nonuniformity affects the contact rigidity of the material, while varying the parameter 
X = H/a over a wide range allows a study of the scale factor. 

It is shown in [6, 7] that with the assumptions made above the upper layer can be viewed 
as an elastic membrane with a tensile rigidity k = 2hGi(1 -- ~)_i and zero bending rigidity. 
The equations that characterize the deformation of a membrane in its plane under the action 
of tangential forces, applied to its boundary, have the following form for the axisymmetrieal 
case: 

k Au*-- ~* = - - ~ ( r )  A = - - + 7 ~  (2.1) dr 2 

where u*(r) is the displacement of points on the membrane in a radial direction. Taking into 
account (2.1) and the comments made above, the contact problem stated can be formulated as 
the following boundary-value problem for the Lam4 equation: 

�9 ~ f f ,  O) = O, W(r,  O) = 0 ~r  r>~ a; (2.2) 

a~(r, 1t) = O, W(r,  H)  = - - [ 6  - -  l(r)] ~r r < a; (2.3) 

k ( A u - - ~ ) = T r z  for z = H ,  O < ~ r < o o .  (2.4) 

The stresses and displacements disappear for r § -. Here, ~ is the translational dis- 
placement of the stamp along the axis of symmetry under the action of the forces P applied 
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to it; f(r) is a function describing the shape of the base of the stamp. In (2.4), we took 
into account the fact that U*(r) = u(r, H) and T(t) = --~rz(r, H). Using Hankel's integral 
transformation with respect to the variable r, the boundary-value problem (2.2)-(2.4) is re- 
duced to an integral equation of the first kind relative to the function describing the dis- 
tribution of contact pressures q(r), acting between the stamp and the base: 

@ 

0 

K (~, t) = i L (u) :o (u~) ]o (ut) du, 
o ( 2 . 6 )  

u sinh 2u -- 2 u~ ~ --21m sinhS u 

L (u) = i ; 
2u cosh ~ u + m (sinh 2u + 2u) 

~H G (~ + I) s (2.7) m =  , 0 = { - c - ~ , l =  ~ . , ~ = 3 - - 4 v .  

Here Jo(x)is Bessel's function, while the function L(u) has the following properties: 

L ( u ) = A u - ~ - O ( u  3) for u---~O, A= u ( m + l ) - - m .  
(m-~ 2) x ' 

L(u)=t +-~+,O -~ for u - . c o ,  

Let us transform in (2.5) to dimensionless variables 

P' = o/a,, r' = r/a, 8' = 8/a, r = q(O), 

then the integral equation of the problem takes the form 
follows) 

1 

0 

l--i 
B= 

using the formulas 

g(r') = (I/a)/(r),; 

(the primes are omitted in what 

(2.s) 

(2.9) 

= 10~, [8 - -  g (r)l, r ~< I. (2.10) 

We used the integrals 

y ]o (u, ~) 2o (ut) du = - -  

0 

i [ 4  (u~) 4 (.t) - ,:~:"] I4, 

0 

2 K(Z), Z = 2 V ~ "  
~C~+t )  ~ + t '  

= ~- [sgn (%-- t). In -~ + 

Let us represent the kernel in (2.6) taking into account (2.9) in the form 

K ('% ~) --  ~ (~ + 0 K (l) - -  y sgn (~ - -  t) In ~ + In Tt - -  F ('~, t); ( 2 . 1 1 )  

F(T, 0 = t + - a - - - n ( @  4 ( u ~ ) 4 ( u 0 - -  e -~:' eu. (2.12) 
0 

Here, the function F(T, t), at least is bounded for all 0 ~T ~<I/l, 0~t ~.~i/l. 

Substituting (2.11) and (2.10) and letting I go to infinity, which corresponds (for a 
fixed 5) to the case of degeneration of the lower elastic layer in the half space (H = -), 
we arrive at the following integral equation: 

1 

j -6-47 % . i w 

0 

We note that without being aware of the existence in the material of a thin surface layer 
with special physlcomechanical properties, it Could be assumed that the integral equation 
(2.13) describes the axlsymmetrical contact problem for a uniform elastic half space, for 
which the contact rigidity is 8" = G*/(I -- 9) = Of. For 9 = 0.3, the quantity 0" exceeds @ 
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by 9%. Thus, the surface nonuniformity results here in an insignificant increase in the cnn- 
tact rigidity. As will be shown in what follows, the situation is different for very small 
%, when the relative thickness of the lower layer approaches 0, but as before H + h. 

In order to investigate the case in very small l, it is necessary to find the asymptotic 
expression of the kernel (2.6) for large r and t. This can be done if in (2.6) L(u) is re- 
placed by its asymptotic representation (2.8) for small u, using then the integral [8] 

0 

where the equality is understood in the sense of the theory of generalized functions, while 
y(r) t) represents a zero-order harmonic of the two-dimensional Dirac delta function. Thus, 
we verify that the degenerate, for very small ~, solution of the problem is determined by 
the integral equation 

1 

(2.14) 
0 

following from (2.10) with the transformations indicated above. 

We note that the axisymmetrical contact problem for a uniform elastic layer with relative 
thickness I is also reduced, for very small l, to an integral equation of the type (2.14), 
where it is only necessary to set ZOA -~ = 28*. Here, for v = 0.3, the quantity 8* is greater 
by 9 (m = 1), 18 (m = i0), and 25% (m = ~). Thus, the surface nonuniformity results here in 
a greater contribution towards increasing the contact rigidity, which is in fact the manifes- 
tation of the scale factor. 

3. The technical realization of the contact problem requires precise specification of 
the boundary conditions, since the displacement of the stamps must be measured with a resolu- 
tion of 10 -5 mm. This specification concerns not only the conditions for the force interac- 
tion in the contact zone, but also the deformation of stamps as structural elements of the 
setup. 

The setup shown by the diagram in Fig. i permits a technical realization of the contact 
problem being examined. In accordance with Fig. I, specimens 4 of the material being inves- 
tigated are compressed by steel spheres 3, when diameters are 25 mm. The deviation of the 
surface of the steel sphere from an ideal sphere does not exceed 0.001 mm) while the height 
of the microirregularities of the surface does not exceed 10 -~ mm. The spheres are Joined 
with massive cylinders 2, when inner endface edges are fitted into the surface of the sphere. 

Air, which passes through constant throttles 5) is introduced into the inner cavity of 
the cylinders. Under the action of the air pressure, the spheres compress the specimens, 
leaving the edges of the cylinders in doing so. 

The manometers 1 permit recording the compressive forces of the specimens and the de- 
struction of symmetry of the entire scheme, which in essence represents a pneumatic bridge, 
measuring the difference of the mutual displacements of the spheres in both arms of the 
bridge. The resolution of this scheme in measuring the displacement is 10 -~ mm, the dif- 
ference in the displacements with resolution i0 -s mm, and in measuring the forces 10 -~ kgf. 
In constructing the setup, the signals from deformation of its elements and thermal effects 
are automatically compensated. 

Thus, the setup examined here compares the deformation characteristics of two specimens, 
--3 

the thickness of which can vary from 10 to 10 mm. In experiments with PMMC specimens having 
a thickness of 1.77 and 2.37 n~n, the effect of surface nonuniformity showed up as follows. 
For a force of P = 2 kgf the complex 

\ J~t/k6,J~ 
where the index 1 represents a thin specimen; 2 represents a thick specimen; t denotes the 
theoretical estimate without taking into account the surface nonuniformity; e represents the 
experimental data. If there were no surface nonuniformity, then this complex would equal 
unity. 
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Fig. 1 

It should be noted that the symmetry of the measurement scheme is established before- 
hand for the two identical specimens with a precision of • Destruction of symmetry 
with different specimens is related not only to the difference in the specimen thicknesses, 
but also to the effect of the surface nonuniformity, which increases with decreasing speci- 
men thickness. Complex (3.1) is formed so as to estimate quantitatively the effect of the 
surface nonuniformity with some uncertainty in the deformation characteristics of the speci- 
mens. Indeed, the effect of an error in the moduli on the final result (3.1) will be greatly 
decreased because it is not the displacements of the stamps themselves that are compared, but 
their ratio. 

Let us calculate complex (3.1) theoretically, i.e., let us replace (61/~i)e by the cor- 
responding theoretical estimate taking into account the surface nonuniformity. For the case 
being examined, the radius of the compressing spheres is R = 1.25 cm, the compressing force 
is P = 2 kgf, the thickness of the specimens is 2H, = 0.177 cm, 2Ha = 0.237 cm, and the elastic 
constants of the material of these spclmans are E = 3.104 kg/cm i and v = 0.32. Without know- 
ing the precise value of the constant m in formula (2.7), we will assume that it is equal to i0. 
Let us write out formulas [8] which give the llmlting solution for small and large values of 
the parameter X = H/a for the problem of compression of a layer with thickness 2H by two, 
symmetrically placed, identical parabolic stamps. For small X, we have 

q(r) = ( e l H R ) ( a  ~ - -  r~), 8 = a~12R,  (3.2) 
p = ~ @ a i / 2 H R ~  

and for large X 

q(r)  -~  ( 4 0 1 n R ) V  a ~ - r 2, 8 -= a 2 1 R ,  P = 8 0 a a / 3 R . .  ( 3 . 3 )  

From Eqs. (3.2) and (3.3), we find, for small and large ),, respectively, 

= 2 R P  ' 2nOb ; (-3.4) 

V ses~3 a / ~p~ (3.5) 
x =  a=l/ 

Equation (3.4) ensures adequate accuracy if X ~ 2, while Eq. (3.5) if X >/3 [8]. For the 
case of a thin specimen, according to the first equation of (3.4), we obtain X = i. 64 and for the case 
of a thick specimen, from the first equation, we obtain I - 3.10. Thus, for calculating com- 
plex (3.1) in the case of thin and thick specimens, it is possible to use Eqs. (3.4) and (3.5), 
respectively. In this case, if the specimen is nonuniform in thickness, in (3.4) e should be 
replaced by 8" -- ~8(2A) -i, while in (3.5) 8 should be replaced by 8" - 81. In calculating in 
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this manner, the ratio ~/~a for unifoz~n and nonuniform specimens, with m = i0, we obtain 
the value 1,055 for complex (3,1). In the same manner, we verify that complex (3,1) is 
greater than 1 for all 1,43~-~m < -. 

Thus, there exists a range of values of m, in which ~heory agrees qualitatively with 
experiment, end in this range there exists a value of m that ensures quantitative agreement. 

We consider the results obtained here as a significant indication of the existence of 
surface nonuniformity in solid bodies. 
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SELF-MODELING PROBLEMS INTHE DYNAMIC BENDING OF BEAMS 

V. P. Yastrebov UDC 534.113:624.042+624.042.8 

The study of self-similar motions of continuous media is vary fruitful [i]. The set of 
self-similar problems is limited by restrictions on the dimensionalities of the characteristic 
quantities. In those cases when these requirements are satisfied, the mathematical aspect of 
the problem can be greatly simplified. 

In the present work, we examine the self-similar problems of dynamic bending of beams, 
satisfying the dynamic Bernoulli--Euler equation. For infinitely long beams, self-similar 
solutions and solutions including self-similar components are known [2-8]. All these solu- 
tions have been obtained, however, without using the properties of self-similarity. In the 
present work, we propose a general method that permits studying a wide class of self-similar 
solutions. Known self-slmilar solutions can be obtained as particular cases based on this 
method. In addition, methods are established for solving problems of bending of beams with 
moving supports, whose motion occurs within a regime that retains the self-similarity of the 
problem. We will refer to this regime as the self-similar regime of motion. The bending of 
a beam under the action of a force that moves along the beam in the self-slmilar regime indi- 
cated is investigated for the first time. 

The properties of self-similarity were used previously in [9] for studying the deforma- 
tion of membranes with movable boundaries. 

i. Let us examine the equation for bending of a beam 

EfO4w/Ox4+mOZw/Ot  ~ = q ( x , t ) ,  (i.i) 

where w is the deflection; t, time; x, coordinate; E, modulus of elasticity of the material; 
I, moment of inertia of a section; m, an adjustable mass; q, an adjustable load. 
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